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We consider small network models for mutually delay-coupled systems which typically do not exhibit stable
isochronally synchronized solutions. We show analytically and numerically that for certain coupling architec-
tures which involve delayed self-feedback to the nodes, the oscillators become isochronally synchronized.
Applications are shown for both incoherent pump-coupled lasers and spatiotemporal coupled fiber ring lasers.
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Synchronization of networked, or coupled, systems has
been examined for large networks of identical �1� and het-
erogeneous oscillators �2�. For coupled systems with smaller
numbers of oscillators, several new dynamical phenomena
have been observed, including generalized �3�, phase �4�, and
lag �5� synchronization. Lag synchronization, in which there
is a phase shift between observed signals, is one of the routes
to complete synchrony as coupling is increased �5� and may
occur without the presence of delay in the coupling terms.

For systems with delayed coupling, a time lag between
the oscillators is typically observed, with a leading time se-
ries followed by a lagging one. Such lagged systems are said
to exhibit achronal synchronization. In �6�, the existence of
achronal synchronization in a mutually delay-coupled semi-
conductor laser system was shown experimentally and, in
�7�, studied theoretically in a single-mode semiconductor la-
ser model. In the case of short coupling delay for unidirec-
tionally coupled systems, anticipatory synchronization oc-
curs when a response in a system’s state is not replicated
simultaneously but instead is anticipated by the response sys-
tem �8,9�, and an example of anticipation in synchronization
is found in coupled semiconductor lasers �10�. Cross-
correlation statistics between the two intensities showed
clear maxima at delay times consisting of the difference be-
tween the feedback and the coupling delay. Anticipatory re-
sponses in the presence of stochastic effects have been ob-
served in models of excitable media �11�, as well as in
experiments of coupled semiconductor lasers in a
transmitter-receiver configuration �12�. When the zero-lag
state is unstable and achronal synchronization occurs, the
situation may be further complicated by switching between
leader and follower. Switching has been observed theoreti-
cally and experimentally in stochastic systems �13� but may
occur even in deterministic chaotic systems �14�.

Given that both lag and anticipatory dynamics may be
observed in delay-coupled systems, it is natural to ask
whether the isochronal, or zero-lag, state, in which there is
no phase difference in the synchronized time series, may be
stabilized in coupled systems. Understanding isochronal syn-
chrony in delay-coupled systems is important in many fields
where long-range correlations play a role in network archi-
tecture. Evidence of long-range correlations leading to syn-
chronized clusters has appeared in the visual cortex �15� and
dynamical cortical neurons �16�. Additional feedback loops
have been used in simple models incorporating long-range
correlations of neurons to enhance synchrony as well �17�.

Stabilizing the isochronal state is very important in bidirec-
tional chaotic communication systems, as shown in recent
theoretical work on communicating in systems with delay
�18�.

Stable isochronal synchronization of semiconductor lasers
has been observed recently in experiments �19,20� and nu-
merically �20,21�. Examples of partial isochronal synchrony,
in which only some of the oscillators in a delay network
synchronize, may be found in �18,22�, and recently a theo-
retical explanation for partial synchronization has appeared
in �23�. Other examples of isochronal synchrony have ap-
peared in neural network models with delay �24,25�.

In this paper, we explore the possibility of adding self-
feedback to two globally coupled situations: �i� Incoherent
delay-coupled semiconductor systems �26� and �ii� coupled
spatiotemporal systems consisting of coupled fiber ring la-
sers �27� with delay �28�.

We consider N coupled oscillators of the following form.
Let F denote an m-dimensional vector field, B an m�m
matrix, and � j, where j=1, . . . ,N, denote the coupling con-
stants. For the cases we examine here, we consider global
coupling including self-feedback:

dxi�t�
dt

= F„xi�t�,xi�t − ��… + � � jBxj�t − ��, j � i . �1�

Given the structure of Eq. �1�, we examine the stability
transverse to the synchronized state, S= �xi�t� :xi�t�=s�t� , i
=1, . . . ,N�, by defining �ij �xj −xi. The linearized variations
in the direction transverse to S are then given by

d�ij�t�
dt

= D1F„xi�t�,xi�t − ��…�ij�t� + D2F„xi�t�,xi�t − ��…

��ij�t − �� + ��i − � j�Bxi�t − �� − � jB�ij�t − �� ,

�2�

where Di denotes the partial derivative with respect to the ith
argument.

We make the following hypotheses to simplify the analy-
sis: �H1� Assume that the dependence on the time delayed
variables in F takes the same form as the delay coupling; i.e.,
D2F�x ,y�=B� f. �H2� Let �i=� f =�, i=1, . . . ,N. Equation �2�
then simplifies to
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d�ij�t�
dt

= D1F„xi�t�,xi�t − ��…�ij�t� , �3�

where it is understood that the arguments of the derivatives
are computed along the synchronized solution s�t� and the
solution is a function of parameters such as coupling and
delay. Computing Eq. �3� along the synchronized state will

generate the Lyapunov exponents for the transverse direc-
tions, and we examine the effect of coupling and delay by
computing the cross correlations between time series as well.

To examine the stability of the isochronally synchronized
state of Eq. �1�, we model N=3 lasers that are pump coupled
�26,29�. An isolated semiconductor laser’s dynamics at the

ith node is governed by
dzi

dt = F̄�zi�, zi= �xi ,yi�, where

F̄�z� = „− y − �x�a + by�,x�1 + y�… , �4�

and x and y are the scaled carrier fluctuation number and
normalized intensity fluctuations about steady state zero, re-
spectively. �2 is the ratio of photon to carrier lifetimes, and a
and b are dimensionless constants �see �30� for details on the
derivation�.

The coupling strengths are �i=� f =�, i=1,2 ,3. This leads
to the following set of differential equations for the system:

dzi�t�
dt

= F̄„zi�t�… + ��
i=1

3

Bzi�t − ��, i = 1,2,3, �5�

where m=2 and B�1,2�=1, with all other entries in B equal
to 0. An example of the intensities with and without self-
feedback in Fig. 1 shows explicitly the effect of self-
feedback in stabilizing the isochronal solution. Writing down
the differential equation for the transverse directions in ma-
trix form for Eq. �5� using Eq. �3� and expanding near the
synchronized solution �ij =0, we obtain X��t�
=A�t ,� ,� ,��X�t�, where A�t ,� ,� ,��=DF(s�t ,� ,� ,��) and
X�0�= I. Due to the nature of the global coupling with self-
feedback, each node receives the same signal. Therefore, the
transverse stability does not explicitly depend on the cou-
pling or delay, but rather on the dynamics of local nodes
�31�. To examine the stability of the isochronal state, we
derive some properties of the transverse Lyapunov exponents
�TLEs�. The TLEs satisfy the following limit: ��x0 ,y0 ,u�

=limt→�
1
t ln

	X�t�u	

	u	 . Here u is a vector in a given direction.
By computing the solution to the linear variational equa-

tions along a given solution, we can extract the TLEs. To

FIG. 1. An example of delay-coupled dynamics showing inten-
sities computed for N=3, �=3.0�, �=30, a=2, b=1, and �
=
0.001, using Eq. �4�. �a� shows a solution where the lasers are
coupled globally without self-feedback, in which isochronal syn-
chrony does not occur. �b� shows a stable isochronal solution with
self-feedback terms included.
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FIG. 2. Prediction of the scaling of the sum of transverse
Lyapunov exponents for Eq. �5� with respect to �. Other parameter
values are as in Fig. 1�b�. Squares are the prediction using Eq. �7�,
and dots are the numerical values.
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examine the scaling behavior of the TLEs, let ��t ,� ,� ,��
=det�X�t ,� ,� ,���. Then, we have that ��t ,� ,� ,��
=exp��0

t tr�A�s ,� ,� ,���ds� �32�. Taking the logarithm of the
matrix solution and noting that the determinant of a matrix is
the product of its eigenvalues, we have

�
i=1

m

��x0,y0,ei� = lim
t→�

1

t
ln�det�X�t,�,�,���� , �6�

where ei are arbitrary independent basis vectors. Equation �6�
yields a rate of volume change in the dynamics in the trans-
verse directions. The solution may still be chaotic with one
or more exponents being positive, but if sufficiently dissipa-
tive, volumes will shrink over time.

From Eq. �4�, since tr�A�t ,� ,� ,���=−��a+by�t ,� ,� ,���
+x�t ,� ,� ,�� and assuming that the inversion x�t ,� ,� ,�� has

zero time average due to symmetry �which is observed
numerically �34��, we have �0

t tr�A�s ,� ,� ,���ds=−��a
+by�,�,���t, and from Eq. �6�, we have

��x0,y0,e1� + ��x0,y0,e2� = − ��a + by�,�,��� . �7�

Since � appears explicitly, it is easy to see how the sum of
the TLEs scales with � and compares with numerical experi-
ments as in Fig. 2.

Although the sum of the TLE is negative, loss of syn-
chrony due to instability may occur at intermediate values of
�, as seen in Fig. 3. Regions where the isochronally synchro-
nized solution is unstable are associated with one or more
positive transverse Lyapunov exponenents. On the other
hand, for sufficiently large damping, the transverse expo-
nents reveal a stronger overall reduction in the phase-space
volume. The stability of isochronal synchrony with respect to
other parameters can also be computed, e.g., as shown in Fig.
4 for variations in coupling strength �.

To illustrate the robustness of the self-feedback structure
for generating isochronal synchronization in delay-coupled
systems, we examine a spatiotemporal stochastic system
with multiple delays composed of coupled fiber ring lasers.
A fiber ring laser system without self-feedback was studied
in �28�, and we extend the same model to include self-
feedback terms. In each ring laser, light circulates through a
ring of optical fiber, at least part of which is doped for stimu-
lated emission. The time for light to circulate through the
ring is the cavity round-trip time �R=202 ns, and the delay
time in the coupling and self-feedback lines is a second delay
�d=45 ns. Each laser is characterized by a total population
inversion W�t� and an electric field E�t�. The equations for
the model dynamics of the jth laser are as follows:

Ej�t� = R exp�	�1 − i
 j�Wj�t� + i���Ej
fdb�t� + � j�t� , �8�

dWj

dt
= q − 1 − Wj�t� − �Ej

fdb�t��2�exp�2	Wj�t�� − 1� . �9�

The electric field from earlier times which affects the field at
time t is

FIG. 3. �Color online� �a� All transverse Lyapunov exponents
and �b� cross correlation �CC� of the dynamics for the same condi-
tions as in Fig. 2. In �b�, the cross correlations between lasers 1 and
2 �solid line� and 1 and 3 �dashed line� are shown. For most values
of � shown here, a cross correlation of 1 is achieved when the shift
between the time traces is zero, showing that the isochronal solution
is stable.
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FIG. 4. Cross correlation �CC� between lasers 1 and 2 �solid
line� and between 1 and 3 �dashed line� vs coupling � for Eq. �5�.
Other parameters are the same as in Fig. 1�b�.
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Ej
fdb�t� = Ej�t − �R� + �

l�j

�lEl�t − �d� + � fEj�t − �d� . �10�

Ej�t� is the complex envelope of the electric field in laser j,
measured at a given reference point inside the cavity. Ej

fbd�t�

is a feedback term that includes optical feedback within laser
j and optical coupling with the other laser. Time is dimen-
sionless. Energy input is given by the pump parameter q.
Each electric field is perturbed by independent complex
Gaussian noise sources � j, with standard deviation D. We use
a fixed input strength for all coupling terms: �i=� f =� for all
i. �Values of the parameters in the model as well as further
computational details can be found in �28�. The only differ-
ence in parameters is that the lasers are not detuned relative
to each other in the current work.�

Because of the feedback term Ej
fdb�t� in Eq. �8�, one can

think of Eq. �8� as mapping the electric field on the time
interval �t−�R , t� to the time interval �t , t+�R� in the absence
of coupling ��=0�. Equivalently, because the light is travel-
ing around the cavity, Eq. �8� maps the electric field at all
points in the ring at time t to the electric field at all points in
the ring at time t+�R. We can thus construct spatiotemporal
plots for E�t� or the intensity I�t�= �E�t��2 by unwrapping E�t�
into segments of length �R.

Figure 5 shows time traces of the N=2 lasers for a single
round trip for both the system with self-feedback described
here and the system without self-feedback �� f =0� �33�. Iso-
chronal synchrony can been seen when self-feedback is in-
cluded, while in the absence of self-feedback the lasers are
delay synchronized. The spatiotemporal plots in Figs. 5�c�
and 5�d� are nearly identical due to the isochronal synchrony.
To quantify the synchrony, we align the time traces for the
two lasers with various time shifts between them. In the ab-
sence of self-feedback, the peak cross correlation occurs
when the lasers are shifted relative to each other by the delay
time. The cross correlation is low when the lasers are com-
pared with no time shift. In contrast, when self-feedback is
included, the lasers achieve a high degree of correlation
when compared isochronally. For the time traces shown in
Fig. 5�a�, the peak cross correlation of 0.9554 occurs when
there is no time shift, although the cross correlation when
shifted by the delay time is nearly as high �0.9549�.

We have swept the coupling strength � for the system of
two lasers with self-feedback and computed the average
cross correlation when the lasers are compared isochronally.
Figure 6 shows that the lasers are well synchronized for in-
put strengths as small as 0.1%. Isochronal synchronization
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FIG. 5. �Color online� Intensity �arbitrary units� for two lasers
coupled with �=0.009. The left panels are intensity vs time for laser
1 �bottom curve� and for laser 2 �top curve�: �a� with self-feedback
and �b� without self-feedback. Spatiotemporal plots corresponding
to coupling with self-feedback for �c� laser 1 and �d� laser 2.
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FIG. 6. Average cross correlation vs coupling for two coupled
lasers with self-feedback.
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can be produced when the lasers are detuned as in �28�, but
this requires stronger coupling and self-feedback
�not shown�.

For N=3 fiber ring lasers, we have done a similar com-
putation for cases with and without self-feedback �not
shown�. We found that when the the lasers are coupled glo-
bally without self-feedback, the isochronal state will still
synchronize. However, adding self-feedback will cause the
isochronal state to stabilize at somewhat lower values of cou-
pling. Further details for this case are in �34�.

In summary, we have considered delay-coupled systems
and, through the addition of self-feedback, obtained stable
isochronal synchrony in coupled semiconductor and fiber
ring laser models. Model analysis for incoherent pump
coupled lasers reveals scaling of the Lyapunov exponents

transverse to the synchronized state, while computations on
systems of coupled fiber ring lasers show how self-feedback
may cause the onset of synchrony in coupled spatiotemporal
systems. In the cases we have studied, we constructed small
globally coupled networks. For the small clusters presented
here with delay, it is advantageous to add feedback loops,
since this was key to stabilizing the synchronous state. A
question for future study is how this method may be scaled
up for larger networks.
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