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The process of protein synthesis in biological systems resembles a one-dimensional driven lattice gas in
which the particles(ribosomes) have spatial extent, covering more than one lattice site. Realistic, nonuniform
gene sequences lead to quenched disorder in the particle hopping rates. We study the totally asymmetric
exclusion process with large particles and quenched disorder via several mean-field approaches and compare
the mean-field results with Monte Carlo simulations. Mean-field equations obtained from the literature are
found to be reasonably effective in describing this system. A numerical technique is developed for computing
the particle current rapidly. The mean-field approach is extended to include two-point correlations between
adjacent sites. The two-point results are found to match Monte Carlo simulations more closely.
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INTRODUCTION

The process of protein synthesis, called translation, can be
modeled using a driven lattice gas in 1D[1–4]. This type of
model is well understood when all particle hopping rates are
uniform, but a model for the real biological process requires
nonuniform particle hopping rates. Direct Monte Carlo simu-
lation of such models is possible when only a few genes are
involved. However, it is desirable to perform large-scale
simulations to fit translation models to experimental data col-
lected for many genes simultaneously(e.g., data from[5]).
For this purpose, Monte Carlo approaches would be compu-
tationally too slow. Therefore, other analytical or computa-
tional methods are needed.

In this paper, we address the issue of quenched disorder
(site-dependent hopping rates) in a driven lattice gas model
for translation. The paper is organized as follows. The model
is first described and its connection to biological protein syn-
thesis explained. Section II contains a brief summary of
known results. In Sec. III, we use a simple coarse-grained
approach to obtain crude, approximate solutions. Section IV
treats our central topic: application of a mean-field method
[1,2] to the problem of quenched disorder. Analytical and
computational results are presented. In Sec. V, we extend the
mean-field approach to include two-point correlations for
better accuracy. We close with a brief summary and discus-
sion of how these methods may be applied to problems of
interest, such as fitting translation models to experimental
data.

I. DESCRIPTION OF MODEL

We focus on translation in prokaryotes, particularlyEs-
cherichia coli, because of its relative simplicity. The process
involves the synthesis of specific proteins based on the se-
quence of messenger RNA(mRNA) molecules. The mecha-

nism consists of ribosomes “reading” the codons of mRNA
as the ribosomes move along an mRNA chain, and the re-
cruitment and assembly of amino acids(appropriate to the
codons being read) to form a protein.(See, e.g.,[6], for more
details.) This process is often described as having three steps:
initiation, where ribosomes attach themselves one at a time
at the “start” end of the mRNA; elongation, where the ribo-
somes move down the chain in a series of steps; and termi-
nation, where they detach at the “stop” codon. Since ribo-
somes cannot overlap, their dynamic is subject to the
excluded volume constraint. Apart from being impeded by
another ribosome(steric hinderance), a ribosome cannot
move until the arrival of an appropriate transfer RNA, carry-
ing the appropriate amino acid(a combination known as
aminoacyl-tRNA, or aa-tRNA). Thus, the relative abun-
dances of the approximately 60 types[7] of aa-tRNA signifi-
cantly affect the elongation rate. Assuming reactant avail-
abilities in a cell are in their steady state, with a time-
independent concentration of ribosomes and aa-tRNA, there
would be an approximately steady current of ribosomes
moving along the mRNA, resulting in a specific production
rate of this particular protein. Our goal is the prediction of
the protein production rates for various mRNA’s, as a func-
tion of the concentration of ribosomes and aa-tRNA’s.

The process of translation is well suited to modeling using
a driven lattice gas in 1D. Particles enter at some rate on one
end of a chain of discrete lattice sites(initiation), then hop
down the chain one site at a time with another rate or set of
rates(elongation), and finally exit the chain at the other end
(termination). The excluded volume constraint is imple-
mented by insuring the spacing between ribosomes is no less
than 12 sites—the approximate number of codons that a ri-
bosome blocks[8,9]. Quenched disorder arises because there
is nonuniformity in the hopping(elongation) rates along the
chain. This effect occurs because at each codon, a ribosome
has to “wait” for the appropriate aa-tRNA before continuing,
and the various aa-tRNA’s are present in nonequal abun-
dances.

The model we employ is the same as in[4]. We model an
mRNA with N codons as a chain of sites, each of which is*Electronic address: 1bs22@cornell.edu
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labeledi. The first and last sites,i =1,N, are associated with
the start and stop codons, respectively. At any time, attached
to the mRNA areM ribosomes(particles). Being a large
complex of molecules, each ribosome will cover, sites
(codons), with ,=12 typically [8,9]. Any site may be cov-
ered by a single ribosome or none. In case of the latter, we
will refer to the site as “empty” or “occupied by a hole.” To
locate the ribosome, we arbitrarily choose thelowest site
covered. For example, if the first, sites are empty, a ribo-
some can bind in an initiation step, and then it is said to be
“on site i =1.” We defineni to be the ribosome density at site
i, where only the left end of the ribosome is counted.(In
[1,2], particles were located by their right end, but either
choice leads to the same rules of motion.) We also define the
coverage densityri =os=0

,−1 ni−s, which is the probability that
site i is covered by some portion of a ribosome.

Next, we specify the dynamics of our model. An attached
ribosome located at sitei will move to the next sitesi +1d
with a rateki, provided sitei +, is empty. For Monte Carlo
simulations, it is convenient to update configurations in dis-
crete time unitsDt. In implementing the simulations, it is
better to use probabilitiespi =kiDt, so that a ribosome on site
i will be moved (or not) with probability pi (or 1−pi). We
purposefully associate these hopping probabilities with a site
because a site is associated with a particular codon. Thus, the
hopping rate from that site may depend on the relative abun-
dance of the appropriate aa-tRNA. Apart from these prob-
abilities, another aspect of our simulations is random sequen-
tial updating, i.e., during each Monte Carlo step(MCS), M
+1 particles are chosen at random, in sequence, to attempt
moves. They are selected from a pool that includes theM
particles on the lattice plus another unbound particle that can
initiate if there are, holes at the beginning of the chain.

In our computational studies, systems begin empty and
are run long enough to reach steady state. After steady state
is attained, data including the current and density distribution
can be collected. Density data is typically collected every
100 MCS. We often use continuous-time Monte Carlo[10]
because it runs far more quickly than and provides the same
results as standard Monte Carlo. Using continuous-time
Monte Carlo also avoids the need to specify a fixed time step
Dt.

In our studies of real mRNA sequences, we use gene se-
quences fromEscherichia coli strain MG1655, obtained
from [11]. Elongation rates at each codon are estimated using
commonly accepted values for the availability of tRNA inE.
coli [12]. The rate at each codon is assumed proportional
(with an arbitrary proportionality constant) to the availability
of the appropriate tRNA that can decode the codon, as in
[13]. Corresponding data are not available for estimating ini-
tiation and termination rates, so we choose various rates of
interest to study.

II. SUMMARY OF PREVIOUS RESULTS

Extensive investigations of the simple totally asymmetric
exclusion process(TASEP, defined as point particles hopping
with unit rate along a line) with open boundaries can be
found in the literature. We first consider studies of uniform

systems. Exact analytic results for the,=1 steady state exist
[14,15]. Systems with extended objectss,.1d) have been
less frequently investigated, but have also been understood
from various approaches. Using a mean-field approach, Mac-
Donald, Gibbs, and Pipkin derived mean-field equations for
the average site occupationknil and considered both closed
[1] and open[2] systems. In the former case, exact solutions
were found, leading to a current versus density relation. For
the latter, the authors resorted to numerical solutions to find
the phase diagram for a variety of initiation and termination
rates. Lakatos and Chou[3] considered uniform open sys-
tems with extended objects. Using a discrete Tonks gas par-
tition function, they derived the current versus density rela-
tion first presented by MacDonald, Gibbs, and Pipkin[1].
Via a refined mean-field theory, they extended this result to
predict currents and bulk densities for the open system,
which they confirmed by Monte Carlo simulations. Finally,
Shaw, Zia, and Lee[4] used an extremal principle[16] based
on domain wall theory[17] to obtain the phase diagram, with
currents and bulk densities, for the uniform open system.
They also found approximate density profiles(related to the
coverage densityr) from a continuum limit. From all of
these studies, the,.1 phase diagram is well known. De-
pending on the initiation(or injection) and termination(or
depletion) rates, the system will settle into one of three
phases. From their dominant characteristics, the three phases
are known as low density, high density, and maximal current.
The initiation and termination probabilities are often referred
to asa andb in the literature. A phase diagram in thisa-b
plane has been determined, showing second-order transitions
between the maximal current phase and the others, as well as
a first-order transition between the high- and low-density re-
gions.

When disorder is introduced, i.e., not all thepi’s are equal,
then methods for exact analytic approaches fail(except in the
extremely dilute limit, where only the motion of a single
particle is of concern[18]). Indeed, even a single slow rate in
a closedsystem poses serious difficulties[19–21]. However,
Kolomeisky[22] obtained approximate steady-state solutions
and phase diagrams for anopensystem with a single non-
uniform rate in the bulk by splitting the system into two
smaller systems connected by the nonuniform rate. Tripathy
and Barma[23] considered a closed system, but with a finite
fraction of identical slow sites. Based on a combination of
Monte Carlo simulations and numerical solutions of mean-
field equations, they found current-density relations. Lakatos,
Chou, and Kolomeisky[24] studied an open system with
identical, periodically spaced slow sites. Mean-field tech-
niques allowed accurate prediction of currents and particle
density profiles. Chou and Lakatos[25] used similar tech-
niques to predict currents through an open system with a few
identical slow sites arranged in clusters. Harris and Stinch-
combe[26] applied discrete mean-field equations and con-
tinuum limits to both closed and open systems in which hop-
ping rates at each site were selected randomly from a
distribution. Further references on TASEP with disorder may
be found in a review paper[27]. All of these studies are
restricted to,=1. Studies of disorder in systems with,.1
have been fairly limited. Shaw, Zia, and Lee[4] found upper
and lower bounds for the current in systems with arbitrary
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disorder. In another work, Shaw, Kolomeisky, and Lee[28]
considered an open system with,.1 and a single nonuni-
form rate in the bulk. As was done for,=1 [22], the system
was divided into two smaller systems connected by the non-
uniform rate. Steady-state currents and bulk densities to ei-
ther side of the nonuniform site were obtained.

III. SIMPLE COARSE-GRAINING APPROACH

We consider briefly an approximate method motivated by
the method of Shaw, Kolomeisky, and Lee[28]. Their par-
ticle hopping rate in the bulk was 1, except for the nonuni-
form rateq at special sitek. Important in their analysis is the
parameter

qef f =
,

1/q + s, − 1d
.

This parameter appears in the current passing from the left
sublattice into the right sublattice:

J = qef f
rleft

,

s1 − rrightd
s1 − rright + rright/,d

, s1d

where rleft and rright are the bulk densities in the left and
right sublattices. We note thatqef f is the same as,K,,k in the
notation of[4], where

K,,i ; S o
j=i

i+,−1
1

kj
D−1

is a coarse-grained rate for translating, sites. The form of
Eq. (1) motivates us to suggest that

J = ,K,,i
ri

,

1 − ri

1 − ri + ri/,
s2d

in regimes in which the coverage densityr is slowly varying
in i. Becauser and K, are both coarse-grained over a dis-
tance,, a relationship between them is unsurprising. Equa-
tion (2) can be solved forri:

ri =
1

2K,,i
fK,,i + J − J/, ± ÎsK,,i + J − J/,d2 − 4JK,,ig.

s3d

It is reasonable to use the positive(high density) root to the
left of the current-limiting region(where the minimumK,

occurs) and the negative(low density) root to the right. Re-
sults of this approach are shown in Fig. 1 for theompAgene
when elongation rates are limiting(i.e., initiation and termi-
nation rates are sufficiently large). The value for currentJ in
Eq. (3) is taken from Monte Carlo simulations ofompA. The
agreement between the coarse-grained result and Monte
Carlo simulations is good in low-density regions, but is
poorer in high-density regions because long-range correla-
tions become more important—an effect not captured by
coarse-graining over the relatively short distance,. Finally,
we note that Eq.(3) can be used only when the currentJ is
known, either from Monte Carlo simulations or from some
analytical means.

IV. MEAN-FIELD APPROACH

We next turn to a mean-field approach using equations
developed by MacDonald, Gibbs, and Pipkin[1] and Mac-
Donald and Gibbs[2]. The equations were applied only to
uniform systems, but we will find that they can be success-
fully applied to nonuniform systems. Here the location of a
particle is determined by the location of its left end. The
particle density at sitei is ni, and the hole density at sitei is
1−os=0

,−1ni−s. For a particle to move from sitei to i +1, pro-
ducing a current, sitei +, must be empty. The method is
“mean field” in the sense that some correlations have been
neglected. The conditional probability that sitei +, is empty
given that sitei contains a particle is replaced by the condi-
tional probability that sitei +, is empty given that sitei
contains either a particle or a hole. That is,

PsA− + uA − ?d =
PsA− + d

PsA− + d + PsA− @ d

< Ps?− + u ? − ?d

=
PsA− + d + Ps+− + d

PsA− + d + PsA− @ d + Ps+− + d + Ps+− @ d

=
1 − os=1

,
ni+s

1 − os=1

,
ni+s + ni+,

,

where we useA to denote a site filled with the right end of a
particle,@ to denote a site filled with the left end of a par-
ticle, and+ to denote an empty site.

The mean-field assumption for the conditional probability
leads to the following equations the time evolution of the
hnij:

dn1

dt
= k0S1 − o

s=1

,

nsD − k1n1

1 − os=1

,
n1+s

1 − os=1

,
n1+s + n1+,

FIG. 1. Coverage density profile for theompAgene ofE. coli
when elongation rates are limiting. Bold curve is Monte Carlo
simulation result, and lighter curve is coarse-grained prediction
from Eq. (3) using the Monte Carlo current. The positive root was
used to the left of the current-limiting region and the negative root
to the right. The real part is plotted where the predictedr is com-
plex. Elongation rates at each codon were assumed proportional to
availabilities of corresponding tRNA[12].
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dni

dt
= ki−1ni−1

1 − os=1

,
ni−1+s

1 − os=1

,
ni−1+s + ni−1+,

− kini

1 − os=1

,
ni+s

1 − os=1

,
ni+s + ni+,

for i = 2, . . . ,N − ,

dnN−,+1

dt
= kN−,nN−,

1 − os=1

,
nN−,+s

1 − os=1

,
nN−,+s + nN

− kN−,+1nN−,+1

dni

dt
= ki−1ni−1 − kini for i = N − , + 2, . . . ,N, s4d

where we usek0 to denote the initiation rate.
For the steady-state solution, time derivatives are set to 0

and the currentJ is introduced. The resulting set of equa-
tions,

J = k0s1 − o
s=1

,

nsd s5ad

ni =
J

ki

1 − os=1

,
ni+s + ni+,

1 − os=1

,
ni+s

for i = 1, . . . ,N − , s5bd

ni =
J

ki
for i = N − , + 1, . . . ,N, s5cd

can be solved iteratively fornN to n1 if J is specified. Then
Eq. (5a) becomes an initial condition to check for consis-
tency to determine whetherJ has been chosen correctly. If
Eq. (5a) is not satisfied, thenJ should be adjusted appropri-
ately and the process repeated.

We present an argument for the validity of this iterative
approach. First, a physically meaningful solution will have
particle densityni P s0,1d and coverage densityos=1

, ni+s

P s0,1d for all i. (Endpoints of the interval are excluded if
there is to be nonzero current flow.) Suppose that for somei,
J.kis1−os=1

, ni+sd. Then from Eq. (5b), ni .1−os=1
,−1ni+s,

meaning thatos=0
,−1ni+s.1, which is a contradiction. So we

see thatJøkis1−os=1
, ni+sd for all i. [Note that although we

have not dealt separately withi =N−,+1, . . . ,N, Eq. (5c) is
consistent with the previous statement.] Thus, J cannot be
too large if physical solutions are to be obtained.

Next, we show that the densitieshnij, while within physi-
cal ranges, are increasing functions ofJ. Consider two dif-
ferent J values:J0 with its associated densitieshnij and J1

with its densitieshmij, which we assume to be in physical
ranges. Suppose thatJ1.J0. Clearly mi .ni for i =N−,
+1, . . . ,N. Using induction on the remainingi, it can be
shown from Eq.(5b) that

mi − ni .
J0

ki

1 − os=1

,
mi+s + mi+,

1 − os=1

,
mi+s

−
J0

ki

1 − os=1

,
ni+s + ni+,

1 − os=1

,
ni+s

=
J0

kis1 − os=1

,
mi+sds1 − os=1

,
ni+sd

Fmi+,S1 − o
s=1

,

ni+sD
− ni+,S1 − o

s=1

,

mi+sDG . 0.

Therefore, the densitieshnij increase with increasingJ.
Finally, we again consider Eq.(5a). The left side increases

monotonically with increasingJ, and the right decreases
monotonically with increasingJ, while densities are in physi-
cal ranges. If we follow the iterative approach,J values that
lead to os=1

, ni+s.1 or J.k0s1−os=1
, nsd are too large and

should be decreased. On the other hand,J values that lead to
J,k0s1−os=1

, nsd are too small and should be increased. One
can start with upper and lower bounds for the current(from
[4]) and use bisection to converge to the correct current. If a
physical solution exists, it is unique and should be found by
this method.

Note that the upper bound forJ from [4],

J ø So
s=0

,−1
1

ki+s
D–1

s6d

for all i, applies also to the mean-field equations. This can be
shown from

o
s=1

,
J

ki+s
= o

s=1

,

ni+s

1 − ot=1

,
ni+s+t

1 − ot=1

,
ni+s+t + ni+s+,

ø o
s=1

,

ni+s ø 1.

In practice, computing iterative solutions forhnij and ad-
justing J by bisection is effective in findingJ and findingni
values that are low density(downstream of the current-
limiting region). Table I shows that there is fairly good
agreement(within 5%) between the mean-field current and
the actual current(from Monte Carlo simulations) for vari-
ous real gene sequences ofE. coli. However, numerical prob-
lems arise in findingni values that are high density(upstream
of the current-limiting region). For high-density solutions,
we have observed that there generally exists a very narrow
range forJ, with a width of less than machine precision, for
which the smallerJ values will fail to satisfy Eq.(5a) be-
cause the densities are too small, and for which the largerJ
values will lead to nonphysical densities. An example of this
phenomenon is shown in Fig. 2.

We next present an argument for why high density solu-
tions are associated with numerical difficulties. For conve-
nience, we assume that theki are uniformly 1, and we seek
uniform density solutions. Equation(5b) gives an iterative
map for ni. We assume that a fixed pointn* exists. It will
then satisfy
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n * = J
1 − s, − 1dn*

1 − ,n*
.

We find high-density and low-density fixed points,

n±
* =

1

2,
f1 + Js, − 1d ± Îf1 + Js, − 1dg2 − 4,Jg .

Suppose the densitiesni+1, . . . ,ni+, are slightly perturbed
from the high-density fixed point, so thatnj =n++d, where
udu!1, for j = i +1, . . . ,i +,. Then

ni = J
1 − s, − 1dn+ − s, − 1dd

1 − ,n+ − ,d

= n+ +
4J

f− 1 + s, − 1dJ + Îf1 + Js, − 1dg2 − 4,Jg2d

+ Osd2d.

To determine stability of the high-density fixed point, we
consider thed prefactor:

a ;
4J

f− 1 + s, − 1dJ + Îf1 + Js, − 1dg2 − 4,Jg2 .

For currents in the expected range,JP s0,1/s1+Î,d2d (cf.,
[2]), a.1 so that the high-density fixed point is unstable. A
similar argument shows the stability of the low-density fixed
point. Although these ideas are proven here only for uniform
density solutions, our numerical results(such as those in Fig.
2) lead us to believe that the nonuniform density case is
similar. It appears that small numerical imprecisions prevent
us from accurately finding high-density solutions, while low-
density solutions can be easily found.

Finding steady-state high-density mean-field solutions is a
nontrivial problem. We have attempted multidimensional
Newton’s method approaches to solve Eq.(5) for hnij andJ,
but these have their own difficulties. Convergence often fails
unless the initial guess is very near the solution. The most
reliable method is to start with an empty lattice and integrate
Eq. (4) to steady state. Although integration is computation-
ally slow, it consistently produces density profiles that are
reasonable and similar to the Monte Carlo simulation density
profiles. Agreement is best in the low-density regime, when
the correlations neglected by the mean-field theory are less
important(data not shown). In the high-density regime, the
mean-field results underestimate the correlations between ad-
jacent particles. An example of this discrepancy is shown for
a uniform system in Fig. 3.

TABLE I. Currents for real gene sequences ofE. coli from
Monte Carlo(MC) simulations and mean-field(MF) calculations.
Both the original mean-field and the two-point mean-field are in-
cluded. Units for the currents are arbitrary. Percent errors for the
mean-field currents, as compared with the Monte Carlo currents, are
given in parentheses. Elongation rates were assumed proportional to
the availability of the appropriate tRNA for each codon[12]. Sev-
eral of the genes were chosen to be initiation-limited by making the
initiation rate 0.78 of the slowest elongation rate. Others were made
termination-limited by making the termination rate 0.34(for asnS
and envY) or 0.52 (for fabG) of the slowest elongation rate. The
remainder were elongation-limited. Errors in the Monte Carlo re-
sults are less than 0.001.

gene limit MCJ orig. MF J (%err) 2-pt. MF J (%err)

adk elong. 0.139 0.133(4.3) 0.137(1.4)

cysK elong. 0.120 0.122(1.7) 0.118(1.7)

gapA elong. 0.194 0.191(1.5) 0.191(1.5)

glnH elong. 0.156 0.154(1.3) 0.158(1.3)

aceF init. 0.170 0.164(3.5) 0.166(2.4)

crr init. 0.172 0.177(2.9) 0.172(0.0)

fabD init. 0.114 0.112(1.8) 0.112(1.8)

asnS term. 0.114 0.114(0.0) 0.114(0.0)

envY term. 0.092 0.091(1.1) 0.091(1.1)

fabG term. 0.112 0.113(0.9) 0.112(0.0)

FIG. 2. Particle density profiles calculated by iteration of mean-
field equations[Eq. (5)] for a uniform system with initiation rate 1,
elongation rates 1, and termination rate 0.1. The system hadN
=150 and,=8. The dark curve is the result for currentJ slightly too
large, and the light/diffuse curve is the result forJ slightly too
small. The two curves are superimposed fori .50. The difference
between the twoJ values was 2310−19 J.

FIG. 3. Particle density profile for a uniform system with initia-
tion rate 1, elongation rates 1, and termination rate 0.1. The system
hadN=150 and,=12. Density peaks(every, sites) are displayed
as symbols: filled squares are the Monte Carlo simulation result,
open triangles are the prediction from the original mean-field
theory, and open diamonds are the prediction from the two-point
mean-field theory. Nonpeak densities are displayed as curves; non-
peak results from all three methods overlap.
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V. MEAN FIELD WITH TWO-POINT CORRELATIONS

To obtain more accurate solutions for density profiles, es-
pecially in the high-density regime, we extend the mean-field
theory to include two-point correlations between adjacent
sites. Variables in the two-point mean-field theory are densi-
ties of bonds, indexed byi, where bondi connects sitei to
site i +1. There are four types of bond densities, which we
denote as follows:n+,i, hole-hole pairss+−+ d; n→,i, particle-
hole pairssA−+ d; n←,i, hole-particle pairss+−@ d; and n3,i,
particle-particle pairssA−@ d. Note that the particle-particle
pair consists of a bond connecting the right edge of one
particle with the left edge of the next particle. Geometry
requires that

n3,i + n←,i = n3,i+, + n→,i+, s7d

and

n+,i + n→,i = n+,i+1 + n←,i+1. s8d

A third equation,

1 = n→,i + n+,i + o
s=1

,

sn3,i+s + n←,i+sd,

can be written because each lattice site is occupied by either
a hole or some part of a particle. However, this third equation
is linearly dependent on Eqs.(7) and (8).

We can use Eqs.(7) and(8) to eliminaten←,i andn+,i from
the problem, so we will write differential equations for the
time evolution of only the two remaining types of densities,
n→,i andn3,i. Fluxes into and out of each state take the form
of a product of the appropriate rate constant, the density of
the state that may evolve, and the conditional probability that
adjacent particles and holes are arranged appropriately for
the evolution to occur. For example, a hole-hole pair at bond
i will evolve to a particle-hole pair at bondi with rate

ki−1n+,iPsA− + − + u ? − + − + d.

We make mean-field assumptions for the conditional prob-
ability, similar to that of MacDonald, Gibbs, and Pipkin[1].
For example,

PsA− + − + u ? − + − + d

< PsA− + − ? u ? − + − ?d

=
n→,i−1

n→,i−1 + n+,i−1
.

Thus the flux of hole-hole pairs at sitei to particle-hole pairs
at sitei is

ki−1n+,i
n→,i−1

n→,i−1 + n+,i−1
.

The resulting differential equations for time evolution of
the bond densities in the bulk are

dn→,i

dt
= ki+,n3,i

n→,i+,

n→,i+, + n3,i+,

+ ki−1n+,i
n→,i−1

n→,i−1 + n+,i−1
− kin→,i

s9ad

dn3,i

dt
= ki−1n←,i

n→,i−1

n→,i−1 + n+,i−1
− ki+,n3,i

n→,i+,

n→,i+, + n3,i+,

.

s9bd

We also have boundary conditions, and for convenience, we
assume that particles enter the lattice one site at a time, so
that only the first site must be free for initiation to occur. We
also assume that a particle whose right edge is on siteN can
leave the lattice, freeing the final, sites. Particle-particle
bonds thus cannot exist in the final, sites. Then the bound-
ary conditions are, for initiation,

dn→,1

dt
= k1+,n3,1

n→,1+,

n→,1+, + n3,1+,

+ k0n+,1 − k1n→,1

dn3,1

dt
= k0n←,1 − k1+,n3,1

n→,1+,

n→,1+, + n3,1+,

and, for i =N−,+1, . . . ,N,

dn→,i

dt
= ki−1no,i

n→,i,1

n→,i,1 + no,i−1
− kin→,i

dn3,i

dt
= 0.

It is possible to obtain an iterative steady-state solution
for the bond densities, fromi =N to i =1. However, this so-
lution appears to exhibit numerical instabilities in the high-
density regime that are similar to those observed with the
original mean-field theory. We would prefer to have a simple
method, like the iteration and bisection method, for comput-
ing the current despite the numerical difficulties in comput-
ing the densities. However, such a method is not apparent.
Instead, we begin with an empty lattice and directly integrate
the differential equations for the bond densities[Eq. (9)] un-
til steady state is attained. The two-point mean-field ap-
proach produces both densities and currents that agree more
closely with Monte Carlo simulations than did the original
(one-point) mean-field theory. Table I compares two-point
mean-field currents with currents from Monte Carlo and the
one-point mean-field theory for real gene sequences. In each
case, the two-point mean-field does as well as or better than
the original mean field at matching the Monte Carlo currents.
Figure 3 compares the two-point mean-field density profile
with that obtained by the other methods, showing that the
two-point mean-field theory successfully incorporates more
of the long-range correlations than does the one-point mean-
field theory.

VI. CONCLUSIONS

We have considered 1D driven lattice gas models with
large particles and quenched disorder. Mean-field theories
were found be effective in computing quantities of interest.
The mean-field equations originally proposed by Mac-
Donald, Gibbs, and Pipkin[1] and MacDonald and Gibbs[2]
for uniform systems were found to work equally well for
nonuniform systems. An iterative method allowed easy and
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rapid computation of the steady-state current through the
system. Steady-state particle densities were also computed
by this method, although only when the system was in a
low-density phase. We have gained some insight into the
numerical difficulties that arise in obtaining high-density so-
lutions. Direct integration of differential equations for the
time evolution of particle densities can always be used to
find the steady-state densities. We found good agreement be-
tween the mean-field current and the Monte Carlo current.
Agreement between the densities was also adequate, though
not as good in the high-density regime.

We extended the mean-field approach to two-point corre-
lations, using similar mean-field approximations for condi-
tional probabilities. Currents and particle densities were ob-
tained more accurately from the two-point mean-field theory
than from the original.

Although the two-point mean-field theory is an improve-
ment on the original theory, Fig. 3 shows that it still does not
capture all of the correlations necessary to reproduce high-
density profiles. The theory could be further extended to in-
clude three-point correlations(such as the density of particle-
particle-hole triplets). However, the number of independent

variables and equations, as well as the complexity of the
equations, would increase as more correlations are added.
Also, numerical instabilities might still exist so that solutions
could be found only by integration. We therefore feel that it
is not convenient to extend the method to include higher-
order correlations.

We conclude that mean-field approaches can be effective
in studying disordered systems. If one is primarily interested
in the current through the system, this quantity can be com-
puted rapidly using iteration and bisection. We expect the
iteration and bisection method to be quite valuable in future
studies because the calculated protein production rates could
be compared to experimental data(e.g., data in[5]) and used
in fitting unknown rate constants.
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